

Drawing Machines

Automated Drawing

* Drawings made with mechanisms
* Repeatable?
* Controllable?
* Editionable?

Mike Lyon, Kansas City, MO

* Based on data?
* Or made to be as random as possible?

This Talk

* Start with some images
* to whet your appetite
* Think about an automated drawing taxonomy
* Time Line: historical, computer age, and contemporary
* Not intended to be comprehensive
*. End with some examples of specific curricula

Jean Tinguely - Switzerland, 1959

http://www.youtube.com/watch?v=GOo5uq2fH6g

Eske Rex - Denmark (2011)

Designguide.tv

Tim Knowles - England, 2006

Erik Brunvand - USA, 2013

A Drawing Machines Taxonomy

Image	Analog (mechanical)	Digital (electronic)
Random	Random marks with direct control of the drawing tool	Computer control, often using environmental input
Deterministic	Mechanical drive of the drawing tool	Computer programmed control

A Drawing Machines Taxonomy

Image Control	Analog (mechanical)	Digital (electronic)
Random	Tim Knowles Eske Rex	Student from Trinity Valley School
Deterministic	Erik Brunvand	Mike Lyons

A Time Line

* Historical: 18th and 19th centuries (automata)
* Early Modern: 1950’s (Metamatics)
* Computer Age: 1960’s - 1970's (printers/plotters)
* Contemporary: 1990's to Now (lots of artists!)

Maillardet's Automaton, 1810

Maillardet's Automaton, 1810

Jaquet-Droz Automata

1768-1774
The
Draughtsman

Desmond Paul Henry: 1962

Hewer 16

Leslie A. Grossman, 2012

David Bowen, U Minn, 2003

Example High School Curriculum

* Based on the Postal Project by Tim Knowles
* Katie Campbell Alta High School
Salt Lake City, UT

Example High School Curriculum

* Overview:
* Advanced art students will participate in the Drawing Machines Experiment by creating a work of art that focuses on mark making in a non-traditional format, specifically where the marks are made without thought or planning.

Example High School Curriculum

* Objectives:

* Each student is given a postal box
* Each student chooses a drawing medium
* Each student puts drawing paper as well as their drawing medium inside the postal box
* Each student seals the postal box
* Each student is required to carry the postal box for a period of one day, from sun up to sun down, without opening the box

Katie Campbell, Alta High School, Salt Lake City, UT

Example High School Curriculum

Example High School Curriculum

Katie Campbell, Alta High School, Salt Lake City, UT

Example High School Curriculum

Example High School Curriculum

High School Summer Workshop

* Trinity Valley School - Fort Worth, TX, July 2012
* Erik Brunvand and Ginger Alford
* 3-day workshop
* Computer Controlled Drawing Machines
* Arduino, foam core, masking tape

High School Summer Workshop

Explore Arduino and components

Prototype with foam board

High School Summer Workshop

Specific Workshop Projects

* A couple specific drawing machines that are easily prototyped
* Computer control with Arduino
* Introduces computing in an arts context
* Introduces art in a computing context
* Great for interdisciplinary groups
* Details in handout...
* also http://www.cs.utah.edu/~elb

The Dancing Arms Drawing Machine

The Harmonograph

From an Educator Workshop

Procedure

Start with potentiometers (knobs)

Procedure

Connect them to Arduino

Procedure

Now connect two hobby servos

Procedure

Cut some foam core

Procedure
Make linkages with nuts/bolts

Procedure

Put a pen through the foam core

Procedure

Tape the arms to the servos

Procedure

Upload some simple code to Arduino

```
#include <Servo.h> // include the Servo library
Servo servo1, servo2; // create objects for both servos
int servo1Pin = 10; // define where the servos are connected
int servo2Pin = 9; // choose any digital pins you like
int pot1Pin = A0; // analog pin for first pot
int pot2Pin = Al; // analog pin for second pot
int pot1val, pot2val; // variables for pot values
void setup() {
    servol.attach(servolPin); // attach the servo objects to digital pins
    servo2.attach(servo2Pin);
}
void loop() {
    potlVal = analogRead(pot1Pin); // read pot1 value
    pot2Val = analogRead(pot2Pin); // read pot2 value
    // map the values received on the analog inputs from the pots
    // to the servo's range of motion.
    potlVal = map(potlVal, 0, 1023, 0, 179);
    pot2Val = map(pot2Val, 0, 1023, 0, 179);
    // send the data to the servos
    servol.write(pot1val);
    servo2.write(pot2val);
    delay(30); // give the servos time to react...
}
```


The Dancing Arms Drawing Machine

Conclusions

* Drawing Machines are an intriguing way to combine art and engineering
* Long and interesting history
* Potential for collaboration
* Art students are introduced to engineering
* Engineering students are introduced to art

Contact / Handouts

* Erik Bruvand - ebrunvand@hotmail.com
* Sandy Brunvand - slbrunvand@hotmail.com
* Handouts/slides - http://www.cs.utah.edu/~elb

UNIVERSITY
of UTAH

