

Automated Drawing

- Drawings made with mechanisms
 - * Repeatable?
 - * Controllable?
 - * Editionable?
- * Based on data?

Mike Lyon, Kansas City, MO http://mlyon.com/

* Or made to be as random as possible?

This Talk

- Start with some images
 - * to whet your appetite

Student from Trinity Valley School workshop

- Think about an automated drawing taxonomy
 - * Time Line: historical, computer age, and contemporary
 - * Not intended to be comprehensive
- End with some examples of specific curricula

A Drawing Machines Taxonomy

Control Image	Analog (mechanical)	Digital (electronic)
Random	Random marks with direct control of the drawing tool	Computer control, often using environmental input
Deterministic	Mechanical drive of the drawing tool	Computer programmed control

A Drawing Machines Taxonomy

Control Image	Analog (mechanical)	Digital (electronic)
Random	Tim Knowles Eske Rex	Student from Trinity Valley School
Deterministic	Erik Brunvand	Mike Lyons

A Time Line

- Historical: 18th and 19th centuries (automata)
- Early Modern: 1950's (Metamatics)
- Computer Age: 1960's 1970's (printers/plotters)
- Contemporary: 1990's to Now (lots of artists!)

Example High School Curriculum

- Based on the Postal Project by Tim Knowles
 - Katie Campbell
 Alta High School
 Salt Lake City, UT

Example High School Curriculum

- * Overview:
 - * Advanced art students will participate in the Drawing Machines Experiment by creating a work of art that focuses on mark making in a non-traditional format, specifically where the marks are made without thought or planning.

Example High School Curriculum

- * Objectives:
 - * Each student is given a postal box
 - * Each student chooses a drawing medium
 - Each student puts drawing paper as well as their drawing medium inside the postal box
 - * Each student seals the postal box
 - * Each student is required to carry the postal box for a period of one day, from sun up to sun down, without opening the box

Katie Campbell, Alta High School, Salt Lake City, UT

Example High School Curriculum

Katie Campbell, Alta High School, Salt Lake City, UT

High School Summer Workshop

- * Trinity Valley School Fort Worth, TX, July 2012
 - Erik Brunvand and Ginger Alford
 - * 3-day workshop
 - Computer Controlled Drawing Machines
 - Arduino, foam core, masking tape

Specific Workshop Projects

- A couple specific drawing machines that are easily prototyped
 - * Computer control with Arduino
 - * Introduces computing in an arts context
 - * Introduces art in a computing context
 - Great for interdisciplinary groups
- Details in handout...
 - * also http://www.cs.utah.edu/~elb

From an Educator Workshop

Procedure

Upload some simple code to Arduino

```
#include <Servo.h>
                           // include the Servo library
                          // create objects for both servos
Servo servol, servo2;
int servolPin = 10;
                           // define where the servos are connected
int servo2Pin = 9;
                          // choose any digital pins you like
void setup() {
  servol.attach(servolPin); // attach the servo objects to digital pins
  servo2.attach(servo2Pin);
void loop() {
 potlVal = analogRead(potlPin); // read pot1 value
pot2Val = analogRead(pot2Pin); // read pot2 value
  // map the values received on the analog inputs from the pots
 // to the servo's range of motion.

potlVal = map(potlVal, 0, 1023, 0, 179);

pot2Val = map(pot2Val, 0, 1023, 0, 179);
  // send the data to the servos
  servol.write(potlVal);
  servo2.write(pot2Val);
 delay(30); // give the servos time to react...
```


Conclusions

- Drawing Machines are an intriguing way to combine art and engineering
 - * Long and interesting history
 - * Potential for collaboration
 - * Art students are introduced to engineering
 - * Engineering students are introduced to art

Contact / Handouts

- * Erik Bruvand ebrunvand@hotmail.com
- * Sandy Brunvand slbrunvand@hotmail.com
- * Handouts/slides http://www.cs.utah.edu/~elb

